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Abstract
Tracking control of piezoelectric actuators is considered in the article. A Hammerstein model is used to depict the rate-
dependent hysteresis characteristics of piezoelectric actuators, in which a Bouc–Wen model is to describe the static hys-
teresis characteristic, and a linear time-invariant system is to describe its rate-dependent characteristics. An inverse
Bouc–Wen model connected in series with the piezoelectric actuator is used to compensate the static hysteresis nonli-
nearity of piezoelectric actuators. Furthermore, an extended state observer–based fractional order sliding-mode control
is designed to deal with higher order unmodelled dynamics and inverse compensation errors. Moreover, the bounds of
the estimation error of the extended state observer are estimated, and the convergence of the proposed control strat-
egy is proved. Experimental results show that the proposed scheme can track both single and composite input signals
within a certain frequency range. Compared with extended state observer–based conventional sliding-mode controller,
the proposed scheme has faster response time and smaller tracking error.
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Introduction

Piezoelectric actuators (PEAs) uses the piezoelectric
material to produce the inverse piezoelectric effect and
the electrostriction effect. Since the PEA has many
great characteristics such as small size, high precision,
high resolution, and fast frequency response, it has
become an important driving element in the precise
position system. PEA is widely used in the scanning
probe microscope,1 active optical element,2 vibration
control,3 biomedical engineering,4 and so on.

The hysteresis characteristics are the multi-valued
nonlinear phenomenon between the applied voltage
and the output displacement of the PEA, which are
rate-dependent, that is, strongly depending on fre-
quency of the input voltage. This rate-dependent hys-
teresis behavior seriously affects the control accuracy of
the system and makes the system closed-loop unstable.5

Both physical and phenomenological models are
used to describe hysteresis nonlinearities. The existing
physical models of the PEA are Maxwell model,6

Duhem hysteresis model,7 Jiles Atherton model,8 and
so forth. Maxwell model is a lumped parameter model.6

The criteria and methods for solving the parameters of
Maxwell model are provided by Qin and Hu.9

Compared with Maxwell model, Duhem hysteresis
model7 has more parameters which are difficult to be
determined in general. In some sense, Jiles Atherton
model8 is too complex to identify the parameters.
Preisach model,10 Prandtl–Ishlinskii model,11 Bouc–Wen
model,12,13 artificial neural network model,14 and support
vector machine model15 are phenomenological models.
Preisach model10 requires a large amount of experimental
data to identify parameters, since Preisach model contains
double integrals. Prandtl–Ishlinskii model,11 compared
with the Preisach model, possesses the easy-to-use prop-
erty for construction and identification. Controller design
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with Bouc–Wen model is much easier12,13 since it contains
fewer parameters. The particle swarm optimization (PSO)
algorithm and genetic algorithm are used to identify the
Bouc–Wen model.12,13 Note that the parameters of the
phenomenological model of hysteresis systems are only
related to data of the input and the output.

An intuitive scheme to deal with the hysteresis nonli-
nearity is to construct an inverse model to compensate
it directly.16 Furthermore, in order to reduce the influ-
ence of compensation errors and model-plant mis-
matches, it is necessary to adopt a feedback control
law. Proportional–integral–derivative (PID) control is
used as a feedback controller that neither inverse com-
pensation errors nor disturbances are considered in the
process of controller design.17 The inverse compensa-
tion error or modeling error is regarded as model
uncertainties, and an H‘ robust controller is designed
to reduce the influence of uncertainties and to ensure
the robust stability.18,19 Sliding-mode control (SMC)
can effectively deal with model uncertainties and distur-
bances of nonlinear systems.20 Some effort has been
made to achieve better performance, for example, fuzzy
SMC can adapt the input saturation and the matched
uncertainty with unknown upper bounds,21–23 the ter-
minal SMC guarantees that the tracking error
approaches 0 in a finite time.24 Compared with tradi-
tional calculus, the fractional calculus operator has
faster convergence speed and memory characteristics.
Fractional order sliding-mode controller25–28 can
achieve good tracking performance, robustness to
external disturbances or model uncertainties, and
finite-time convergence to the desired trajectory. In
SMC design, the upper bound of disturbances or model
uncertainties need to be acquired in the control design,
although it is difficult in general. In order to overcome
this deficiency, SMC with disturbance estimation is
proposed,29–33 in which the upper bound of distur-
bances or model uncertainties is no longer needed. The
existing SMC with disturbance estimation featured
with a conventional SMC or a simple disturbance esti-
mation strategy produces a slow response speed and
insufficient estimation of disturbances. In the article, a
fractional order SMC with extended state observer is
applied to deal with the hysteresis nonlinearity of
PEAs. Fractional order operators can achieve fast
response and small tracking error, and the extended
state observer can achieve high-precision estimation of
disturbances and unmeasured states.

Recently, some schemes without hysteresis inverse
models are put forward, for example, both smith pre-
dictor34 and hysteresis observer35,36 are designed to
compensate the hysteresis nonlinearity of PEAs.
Although the control scheme without hysteretic inverse
models can avoid the heavy computational burden
caused by the hysteretic inverse model, the design of
controller highly relies on the hysteresis model and is
difficult to guarantee stability.

In this article, the hysteresis characteristic of PEAs is
described by a Hammerstein model, in which the static

hysteresis nonlinearity is represented by a Bouc–Wen
model and its parameters are identified by PSO algo-
rithm. A second-order linear time-invariant system is to
capture rate-dependent characteristics, and its para-
meters are identified with nonlinear least squares by
system identification toolbox of Matlab. In the control-
ler design section, an inverse Bouc–Wen model is con-
nected in series to the PEA in order to compensate the
static hysteresis of PEAs. An extended state observer–
based fractional order sliding-mode control (ESO-
FOSMC) is designed, in which the extended state
observer is used to observe and compensate the high-
order unmodelled dynamics, compensation errors and
external disturbances. Fractional order SMC is used to
achieve fast response and to minimize tracking errors.
Moreover, the bounds of the estimation error of the
extended state observer are estimated and the conver-
gence stability of the proposed control strategy is
proved, respectively. The experimental results show the
effectiveness of the proposed strategy. Compared with
an extended state observer–based conventional sliding-
mode controller (ESO-SMC), the design ESO-FOSMC
method has faster response time and smaller tracking
error.

Rate-dependent Hammerstein model of
PEA

Rate-dependent hysteresis system is referred to the sys-
tem, whose output is related to not only the current and
the historical input signal but also the variable rate of
the current and historical input signal. PEAs represent
this rate-dependent characteristic, that is, the output of
the PEA is relevant to the change of input voltage fre-
quency, as shown in Figure 1.

The Hammerstein model is a block-connected non-
linear model consisting of a static nonlinear function

Figure 1. The rate-dependent hysteresis characteristics of
PEA.
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followed by a linear dynamic system37,38 which is shown
in Figure 2.

The experiment indicates that the shape of the hys-
teresis loop is almost unchanged when the PEA is
working over its low-frequency range. There is a rate-
dependent characteristic of the PEA at higher frequen-
cies. In this article, the Hammerstein model is used to
describe the rate-dependent characteristics of PEAs.
The static nonlinear part of the Hammerstein model is
described by the Bouc–Wen model, and the linear
dynamic is a second-order linear time-invariant system.
The rate-dependent hysteresis model of the PEA is
shown in Figure 3.

Bouc–Wen model

Compared with other models, Bouc–Wen model con-
tains fewer parameters which can be identified with
fewer data. Thus, Bouc–Wen model is adopted in this
article. The Bouc–Wen model describes the size and
shape of the hysteresis loop through a nonlinear equa-
tion with uncertain parameters. By choosing the para-
meters of the equation reasonably, a large number of
hysteresis loops with different shapes can be obtained
to simulate the hysteresis characteristics of the actual
object. The mathematical expression of Bouc–Wen
model is

v= du� h
_h=ad _u� b _uj j _uj jn�1h� g _u hj jn ð1Þ

where u is the input voltage, v is the system output (hys-
teresis displacement), h represents the hysteresis term,
and d is the proportional gain. The magnitude of the
hysteresis loop is determined by a, and the shape of
hysteresis loop is determined by b and g. Although the
model order n has no significant effect on the hysteresis
shape, it mainly determines the smoothness of the hys-
teresis curve.

Linear dynamic model

The Hammerstein model describing the rate-dependent
hysteresis characteristics of PEA is established as
follows

m€y+ c _y+ ky= k1v ð2aÞ

v= du� h
_h=ad _u� bj _ujh� g _ujhj

�
ð2bÞ

where the model order of Bouc–Wen model is set to
n=1, y represents the output displacement of the PEA.
The parameters m, c, k, d, and k1, respectively, repre-
sent the mass, damping, stiffness, effective piezoelectric
coefficients, and the platform gain of the piezoelectric
system.

Linear dynamic model G(s) reflects the dynamic
characteristics of PEAs

G(s)=
y(s)

v(s)
=

k1
ms2 + cs+ k

ð3Þ

Choose x1 = y, x2 = _y, the state-space model of the
given PEA is

_x1

_x2

� �
=

0 1

� k
m � c

m

� �
x1

x2

� �
+

0
k1
m

� �
v

y= 1 0½ �
x1

x2

� �
8>>><
>>>:

_h= ad _u� b _uj jh� g _u hj j
v= du� h

( ð4Þ

Parameter identification

The experiment shows that the shape of the hysteresis
loop is almost unchanged when the PEA is working
over its low-frequency range. Here the PSO algorithm
is used to identify its parameters d, a, b, and g of the
Bouc–Wen model of PEAs according to its input and
output data at some low frequencies.

The PSO algorithm is proposed by Kennedy and
Eberhart39 while they were studying the bird predator
behavior. The PSO algorithm is inspired by the beha-
vior characteristics of the biological population and is
used to solve the optimization problem, in which each
particle represents a potential solution of the problem
and corresponds to a fitness value determined by the
fitness function. The velocity of the particle determines
the direction and distance of the particle movement,
which is adjusted dynamically by the experience of
itself and other particles so as to find a better solution
accordingly.

In PSO, each particle represents a set of model para-
meters, and a fitness function is set to calculate the dis-
tance between the particle and the optimal one. In the
process of the Bouc–Wen model parameter identifica-
tion, the root mean square (RMS) error

J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nm

Xnm
i=1

(yexp(i)� ymdl(i))
2

s
ð5Þ

is chosen as the fitness function, where yexp(i) is mea-
sured displacement and ymdl(i) is evaluated

Figure 2. The structure of Hammerstein model.

Figure 3. The structure of Hammerstein model of PEA.
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displacement at the ith h sampling time, nm is the num-
ber of sampling points (nm =600). The particle velocity
and position of the updated equation are

vid(t+1)=w(t)vid(t)+ c1(t)r1 pid(t)� xid(t)ð Þ
+ c2(t)r2 pgd(t)� xid(t)

� �
xid(t+1)= vid(t+1)+ xid(t)

where xid =(xi1, xi2, . . . , xiD) and vid =(vi1, vi2, . . . ,
viD) represent the position and the velocity of a particle,
respectively; pid =(pi1, pi2, . . . , piD) represents the opti-
mal position of the current particle; pgd =(pg1,
pg2, . . . , pgD) represents the optimal position of group
particles; N is the number of particles and i 2 ½1,N� is
an integer; D is the particle dimension; r1 and r2 2 ½0, 1�
are random numbers. The cognitive parameters and
social parameters c1(t) and c2(t) are

c1(t)=
t
K (c1s � c1f)+ c1f ð6Þ

c2(t)=
t
K (c2s � c2f)+ c2f ð7Þ

where c1s and c1f are the initial and final values of cog-
nitive parameters; c2s and c2f are the initial value and
final value of social parameters; t is the current itera-
tion number and K is the maximum iteration number.

The inertia weight of w(t) satisfies

w(t)=wmax � wmax � wminð Þ � t=K ð8Þ

where wmax and wmin are the final weight and the initial
weight, respectively. The parameters of PSO algorithm
are listed in Table 1.

The values of parameters of the Bouc–Wen model
identified by the PSO are as follows

d=1:2560 a=0:3438

b=0:4656 g =0:04474

The outputs of the Bouc–Wen model and the PEA are
shown in Figure 4, while the input signal is

ud =12 � (2 sin (2pft)+3)

with f=0:5 Hz.
A set of sinusoidal sweep signals ud =12 � (2 sin

(2p-t)+3) is used to stimulate the PEA stage, whose
frequency of - increases at a linear rate with time and
varies in 0:1� 50 Hz. Thereafter, a set of discrete inputs
u(t) and outputs y(t) are obtained accordingly.

According to the Bouc–Wen model identified by the
PSO algorithm, the value of v(t) is calculated. The lin-
ear second-order system parameters are identified with
nonlinear least squares by Matlab identification
toolbox

G(s)=
546, 600

s2 +726:5 s+551, 400
ð9Þ

Note that in the process of identification, v(t) and
y(t) are treated as input and output sequences,
respectively.

The parameter values of the linear dynamic model
are identified as follows

m=1kg c=726:5 N s=m

k=551, 400 N=m k1 =546, 600 N=m

Model validation

Validation is to demonstrate that the model is a reason-
able representation of the actual system, that is, to show
the model can reproduce system behaviors with enough
fidelity to satisfy analysis objectives. In order to vali-
date the rate-dependent hysteresis model equation (4), a
hardware-in-the-loop simulation system is constructed
as shown in Figure 5, where the hardware in the system
is the PEA and the controller is a Simulink model.

Fast prototype design is adopted in the controller
design and implementation. The controller is con-
structed in the real-time workspace (RTW) toolkit of
Simulink. The designed controller is then transformed
into C-code by the C-compiler in Simulink before
infixed into the Target PC. In the PEA stage, both A/D
and D/A conversions are based on Advantech PCI-
1710 data acquisition card, and the rated frequency
range of it is about 0� 50 Hz.

Figures 6–8 show the comparison of hysteresis loop
curves of experiments and models while the reference
input is ud =12 � (2 sin (2pft)+3), and the frequencies
of the reference signal of f are 30, 40, and 50 Hz,
respectively.

Figures 9 and 10 show the comparison of hysteresis
loop curves of experiments and models, while the refer-
ence input is a composite signal

ud =12 � 0:5 5� sin(2pf1t)� � � � � sin(2pf5t)ð Þ

Table 1. PSO parameter settings.

Parameters K N D c1s c1f c2s c2f wmax wmin

Value 2000 50 4 4 1 1 4 0:9 0:4

Figure 4. Outputs of PEA and Bouc–Wen mode at f = 0:5 Hz,
solid line: the output of Bouc–Wen mode, dashed line:
experimental output.
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where f1 =10 Hz, f2 =20 Hz, f3 =30 Hz, f4 =40 Hz,
and f5 =50 Hz and f1 =5 Hz, f2 =15 Hz, f3 =25 Hz,
f4 =35 Hz, and f5 =45 Hz, respectively. The RMS
error and the maximum error of the model deviation at
the different frequency are listed in Table 2.

Controller design

The controller consists of two parts: an inverse Bouc–
Wen model and an ESO-FOSMC. The Bouc–Wen

inverse model is connected with the PEA so as to com-
pensate its hysteresis nonlinearity. The compensation
error is treated as uncertainties. Furthermore, the ESO-
FOSMC is adopted to eliminate or to reduce the influ-
ence of the compensation error. The control structure
of the system is shown in Figure 11, where xd is the ref-
erence input, N is a Bouc–Wen model, N�1 is the
inverse Bouc–Wen model which compensates the hys-
teresis nonlinearity, G(s) is the linear dynamic part,
ESO represents the extended state observer, and
FOSMC represents the fractional order sliding-mode
controller.

Hysteresis compensator

In order to eliminate the hysteresis nonlinearity of the
PEA, a static hysteresis compensator is designed, which
is to drive the output signal v to track the reference sig-
nal vr, see Figure 12.

Denote H( � ) as the hysteretic nonlinear operator
described by equation (2b). The Bouc–Wen model and
the inverse model (hysteresis compensator) can be writ-
ten respectively as

v= du�H(u) ð10Þ

and

u=
vr +H(u)

d
ð11Þ

where the scalar d has been identified, and d�H( � ) is
invertible in general, c.f. equation (10). Note that the

Figure 5. Piezoelectric actuators stage.

Figure 6. Model validation at f = 30 Hz, solid line: simulation
output, dashed line: experimental output.

Figure 7. Model validation at f = 40 Hz, solid line: simulation
output, dashed line: experimental output.

Figure 8. Model validation at f = 50 Hz, solid line: simulation
output, dashed line: experimental output.

Table 2. RMS and maximum error of the model deviation.

Frequency (Hz) Max error (mm) RMS (mm)

30 Hz 1.1514 0.3806
40 Hz 1.5369 0.4375
50 Hz 1.8117 0.6623
(10,20,30,40,50) Hz 1.7029 0.4719
(5,15,25,35,15) Hz 1.2916 0.4151

RMS: root mean square.
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hysteresis compensator takes the reference signal vr as
input and the control signal u as output.

Since the hysteresis compensator (11) is a static non-
linear term, it can compensate static hysteresis only.40

The output of the hysteresis compensator and the PEA
is symmetric with respect to y=x while the frequency
of the input signal is f=0:5 Hz, c.f. Figure 13.

While adopting the hysteresis compensator, the sys-
tem under consideration can be treated as a linear sys-
tem with disturbances. Therefore, the SMC and
extended state observer can be designed, respectively,
due to the separation principle.

Extended state observer

In this part, an extended state observer is designed to
observe external disturbances, model-plant mismatches
and unmodeled dynamics.

Suppose that the disturbances u are acting on the
input of the plant G(s), and u is differentiable with
respect to t.

The state-space description of G(s) is

_x1 = x2
_x2 = � k

m x1 � c
m x2 +

k1
m (v+u)

y= x1

8<
: ð12Þ

Treat the disturbance of (k1=m)u as an extended
state x3, that is, x3 :¼ k1

m u, and rewrite equation (12) as

_x1 = x2
_x2 = � k

m x1 � c
m x2 + x3 +

k1
m v

_x3 =q

y= x1

8>><
>>: ð13Þ

where q is the differential of (k1=m)u. Note that the
systems equation (13) is observable. Design an extended
state observer of the system equation (13) as

_z1 = z2 � b1(ŷ� y)
_z2 = � k

m z1 � c
m z2 +

k1
m v+ z3 � b2(ŷ� y)

_z3 = � b3(ŷ� y)
ŷ= z1

8>><
>>: ð14Þ

where z1, z2, and z3 are the state of the extended state
observer, ŷ is the output of the observer, b1, b2, and b3

Figure 9. Model validation at f = (10, 20, 30, 40, 50) Hz,
solid line: simulation output, dashed line: experimental output.

Figure 10. Model validation at f = (5, 15, 25, 35, 45) Hz,
solid line: simulation output, dashed line: experimental output.

Figure 11. Structure of control system.

Figure 12. Structure of hysteresis compensator.

Figure 13. Hysteresis compensation at f = 0:5 Hz, solid line:
hysteresis compensation output, dashed line: PEA output.
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are the observer gains to be determined. Note that in
equation (14), z1, z2, and z3 are the observed values of the
state x1, x2, and (k1=m)u, respectively. Therefore, the dis-
turbance term (k1=m)u in equation (12) can be approxi-
mated by the state z3 of the extended state observer.

Denote ei = xi � zi for all i=1, 2, 3 and
e :¼ ½ e1 e2 e3 �T. The dynamics of the error system is

_e=Ae� L(ŷ� y)+Bwq

=(A� LC)e+Bwq
ð15Þ

where

A=
0 1 0
� k

m � c
m 1

0 0 0

2
4

3
5, L=

b1

b2

b3

2
4

3
5,

C= ½ 1 0 0 �, and Bw = ½ 0 0 1 �T

The eigenvalue of the matrix (A� LC) determines
the attenuation rate of the observer error, that is, the
farther the distance to the imaginary axis, the faster the
observation error attenuates. Assign the pole of
(A� LC) on the left half plane41

l0 sð Þ= sI� A� LCð Þj j=(s+w0)
3 ð16Þ

where w0 is the bandwidth of the observer. That is,
parameters of the extended state observer satisfy the
following equation

b1 +
c
m =3w0

c
m b1 +b2 +

k
m =3w0

2

b3 =w0
3

8<
: ð17Þ

The error system equation (15) is input-to-state sta-
ble with respect to q,42 while w0 . 0 is on the left half
plane. Theoretically, the state of observer is approxi-
mated to the actual state of the system at arbitrary fast
speed if the disturbance of u varies slowly, c.f., q ’ 0.

Theorem 1. Assume that q in system equation (13) is
bounded, that is, jqj łM1 for a given M1 . 0. Then
the estimated error of the extended state observer is
bounded, that is, jjejj łM2 for some given M2.
Moreover, limt!‘ e(t)=0.

Proof. Denote A1 =A� LC. Then

e(t)= exp (A1t)e(0)+
Ðt
0

exp (A1(t� t))Bwqdt ð18Þ

and

k e(t) k ł k exp (A1t) kk e(0) k

+

ðt
0

k exp (A1(t� t)) kk Bw kk q k dt
ð19Þ

where jj � jj is any Euclidean norm.
According to equation (16), A1 has triple eigenvalues

with l1 = l2 = l3 = � w0, then there exists k . 1 such
that for all tø 0

jj exp (A1t)jj ł k exp (� w0t) ð20Þ

jj exp (A1(t� t))jj ł k exp (� w0(t� t)) ð21Þ

Then equation (19) can be rewritten as

e(t)k kł k exp (� w0t) e(0)k k+ kM1

w0
(1� exp (� w0t))

Denote M2 :¼ k k e(0) k +(kM1=w0), then
k e(t) k łM2 for all tø 0, and limt!‘ e(t)=0.

ESO-SMC

In order to ensure robustness, conventional SMC needs
to know the upper bound of disturbances or model
uncertainties, although somehow it is impossible in the
process of control design. SMC method with a distur-
bance estimation is proposed29,30 in which the upper
bound of disturbances or model uncertainties is no lon-
ger needed.

Denote the displacement error as

e= y� xd = x1 � xd ð22Þ

where xd is the reference input.
Due to (k1=m)u� z3 = e3, the dynamics of e is

_e= x2 � _xd

€e= _x2 � €xd

= � €xd �
k

m
x1 �

c

m
x2 +

k1
m

v+ z3 + e3

ð23Þ

Furthermore, define a sliding surface as

s= le+ _e ð24Þ

where l . 0 is a controller parameter that needs to be
tuned.

Due to equations (22) and (23), the system dynamics
along the sliding surface is

_s= l _e+ €e

= l x2 � _xdð Þ � €xd �
k

m
x1�

c

m
x2 +

k1
m

v+ z3 + e3

Choose the SMC of v as

v=

m

k1
l _xd � x2ð Þ+ €xd +

k

m
x1 +

c

m
x2�rs� h sgn (s)

� �
� m

k1
z3

ð25Þ

The real control law applying to the system is
u=(v+H(u))/d in terms of equation (10), where

v=

m

k1
l _xd � z2ð Þ+ €xd +

k

m
x1 +

c

m
z2�rs� h sgn (s)

� �
� m

k1
z3

ð26Þ

x1 is a measured displacement and x2 in equation
(25) are replaced by z2 since x2 cannot be measured
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directly. z3 is one of the states of the extended state
observer, r and h are parameters to be determined.
Then, the dynamics of systems with the control v along
the sliding surface is

_s= � rs� h sgn (s)+ e3 ð27Þ

ESO-FOSMC

Fractional calculus is a generalization of the traditional
integer calculus to non-integer orders. The operator of
fractional calculus is represented by symbol t0D

s
t

t0D
s
t ¼

D
Ds =

ds

dts , R(s). 0
1, R(s)=0Ðt
t0

(dt)�s, R(s)\ 0

8>><
>>: ð28Þ

where t0, t are the upper and lower limits of the calculus
operators, s 2 R is the order of the operator, R(s) rep-
resents the real part of s.

The most commonly used definition of fractional
calculus is the Riemann–Liouville definition

t0D
s
t f(t)=

1

G(n� s)

d

dt

� 	n ðt
t0

f(t)

(t� t)1�(n�s)
dt ð29Þ

where n is an interger with n� 1\ s \ n, G( � ) is the
Gamma function.

Under the zero initial condition, the Laplace trans-
form of fractional calculus based on Riemann–
Liouville definition is

L t0D
s
t f(t)


 �
= ssF(s) ð30Þ

The function f(t) is difficult to calculate due to the
complexity of equation (29). The Oustaloup filtering
method43 can be used to approximate a fractional cal-
culus operator in the specified frequency range of
(wb,wh), that is

ss ’Gf(s)= ~K P
N

i=�N

s+w0i
s+wi

ð31Þ

where N=2, w0i, wi are obtained by

w0i =wb
wh

wb

� k+N+1
2
(1�s)

2N+1

wi =wb
wh

wb

� k+N+1
2
(1+s)

2N+1

~K=wh
s

ð32Þ

According to the theory of fractional calculus, a frac-
tional sliding surface is designed

s= le+ _e+ c0D
�se ð33Þ

where l . 0, c0 . 0 are controller parameters, s 2 (0, 1�
is the fractional order.

Due to equations (22) and (23), the system dynamics
along the sliding surface is

_s= l _e+ €e+ c0D
1�se

= l(x2 � _xd)� €xd �
k

m
x1 �

c

m
x2

+
k1
m

v+ z3 + e3 + c0D
1�s(x1 � xd)

ð34Þ

Choose the fractional order SMC law as

v=
m

k1

l( _xd � x2)+ c0D
1�s(xd � x1)

+ €xd +
k
m x1 +

c
m x2 � rs� hsgn(s)

� �
� m

k1
z3

ð35Þ

Furthermore, the real control law applying to the
system is u=(v+H(u))=d in terms of equation (10),
where

v=
m

k1

l( _xd � z2)+ c0D
1�s(xd � x1)+ €xd

+ k
m x1 +

c
m z2 � rs� hsgn(s)

� �
� m

k1
z3

ð36Þ

x1 is a measured displacement, and x2 in equation
(36) are replaced by z2, since x2 cannot be measured
directly. z3 is one of the states of the extended state
observer, r and h are parameters to be determined.
Then, the dynamics of systems with the control v along
the sliding surface is

_s= � rs� h sgn (s)+ e3 ð37Þ

Remark 1. The sliding surface dynamics of ESO-
FOSMC and ESO-SMC are consistent.

Stability analysis

Define a candidate Lyapunov function

V :¼ 1

2
s2 ð38Þ

The first-order differential of equation (38) is

_V= s½�rs� h sgn (s)+ e3�

ł � rs2 � h sj j+ je3j sj j
= � sj j r sj j+h� je3jð Þ

ð39Þ

To guarantee that _Vł 0, that is, the system converges
to the sliding surface of s= le+ _e+ c0D

�se or
s= le+ _e, the following condition has to be satisfied

h ø je3j ð40Þ

Remark 2. Since _Vł 0 in equation (39) while h ø je3j
is chosen, the system converges to the sliding surface of
s=0. Furthermore, due to s= le+ _e+ c0D

�se=0,
the system state converges to reference signals. Thus,
the convergence rate of the proposed control algorithm
can be determined by parameters of l, c0, s, r, and h

due to equations (33) and (39).
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An original SMC, that is, without extended state
observer, is determined as

~v=
m

k1
~l( _xd � ~z2)+ ~c0D

1�s(xd � x1)+ €xd +
k

m
x1

�

+
c

m
~z2 + (� ~rs� ~h sgn (s))

�
ð41Þ

where ~l, ~r, ~h, ~c0 are controller parameters that need to
be tuned, and ~z2 is the state of the corresponding
Luenberger observer. With the original SMC, the first-
order differential of the candidate Lyapunov function
is

_V= s _s

= s ~l(~z2 � _xd)+ ~c0D
1�s(x1 � xd)� €xd �

k

m
x1

�

� c

m
~z2 +

k1
m

~v+
k1
m

u

�
ð42Þ

Due to equation (41), equation (42) can be written as
follows

_V= s �~rs� ~h sgn (s)+
k1
m

u

� �

ł � ~rs2 � ~hjsj+ k1
m

ujsj

Accordingly, to guarantee _Vł 0, the following con-
dition has to be satisfied

~h ø
k1
m
juj ð43Þ

Comparing equation (43) with (40), the uncertainties
are transformed from (k1=m)u to e3 due to the use of
the extended state observer where in general
je3j � (k1=m)juj. Thus, on account of the introduction
of extended state observer, the parameter of h can be
chosen much smaller.

Remark 3. According to the previously identified para-
meters of k1 and m, the value of ~h is relatively large,
which is not allowed by the experimental equipment.

Remark 4. To alleviate chattering phenomenon, the sign
function sgn(s) is replaced by the smooth function44

con(s)=
s

sj j+ d
ð44Þ

for all d . 0.

Real-time tracking control experiment

In order to verify the effectiveness of the designed ESO-
FOSMC, a physical experiment is carried out. The
parameters of the controller are listed in Table 3.

External disturbance rejection and step responses

Choose a reference signal xd =20 mm for all tø 0, that
is, the frequency of f=0 Hz. Consider an external
disturbance

u=
0:5 V t 2 ½0:04, 0:06�
0 otherwise

�

That is, an external disturbance of amplitude 0.5 V
for 0.02-s duration is added to the PEA. Figure 14
shows the tracking trajectories with the ESO-FOSMC
where the proposed ESO-FOSMC can eliminate or
attenuate the influence of the disturbances. The experi-
mental results also show that the proposed ESO-
FOSMC strategy has faster response time compared
with ESO-SMC.

Sinusoidal signal tracking experiment

Choose a single frequency input signal

xd =20 sin (2pft� p=2)+20 mm

where f=10, 20, 30, 40, and 50 Hz, respectively. The
evolutions of displacement and error of the PEA are
shown in Figures 15–19, accordingly.

Then choose two composite input signals

xd =5(5� cos(2pf1t)� � � � � cos(2pf5t)) mm

where f1 =10 Hz, f2 =20 Hz, f3 =30 Hz, f4 =40 Hz,
f5 =50 Hz in the first compounding frequency input
signal and f1 =5 Hz f2 =15 Hz, f3 =25 Hz,

Table 3. Controller parameter settings.

Parameters Value

l 800
c0 1200
s 0:2
h 0:5
r 600
w0 2100
d 3

Figure 14. Experimental result of external disturbance
rejection and step response.
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Figure 15. Trajectory tracking results (f = 10 Hz).

Figure 16. Trajectory tracking results (f = 20 Hz).

Figure 17. Trajectory tracking results (f = 30 Hz).

Figure 18. Trajectory tracking results (f = 40 Hz).

Table 4. RMS and maximum error.

Reference input
frequency (Hz)

ESO-SMCRMS (mm) ESO-SMCMax error (mm) ESO-FOSMCRMS (mm) ESO-FOSMCMax error (mm)

10 0.1856 0.4304 0.1099 0.2992
20 0.3296 0.7244 0.2167 0.4991
30 0.4210 0.7922 0.2855 0.5738
40 0.5329 0.9027 0.3797 0.6279
50 0.7177 1.2829 0.5329 0.9060
(10,20,30,40,50) 0.3509 0.7725 0.2430 0.5454
(5,15,25,35,45) 0.3385 0.7611 0.2271 0.5588

RMS: root mean square; ESO-SMC: extended state observer–based conventional sliding-mode controller; ESO-FOMSC: extended state observer–

based fractional order sliding-mode control.
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f4 =35 Hz, f5 =45 Hz in the second compounding fre-
quency input signal. The evolutions of displacement
and the error of PEAs are shown accordingly in
Figures 20 and 21. Both the RMS error and the maxi-
mum error of the trajectory tracking at different fre-
quency are listed in Table 4.

The experiment results above indicate that the PEA
can track both single-frequency signals and composite
signals in a relatively large-frequency range, that is, the
maximum relative error is within 2:5%. In particular,
at low frequencies, for example, fł 20 Hz, the relative
error is less than 1:25%, which demonstrates the effec-
tiveness of the control scheme. The experimental results
also show that the proposed ESO-FOSMC strategy has

smaller tracking error compared with ESO-SMC. Note
that the relative error and frequency range that can be
tracked are determined by both the controller and the
physical limitation.

Conclusion

In order to describe hysteresis nonlinearity of PEAs, a
Hammerstein rate-dependent hysteresis model was
established and validated using the experimental data
in this article. In the controller design process, an
inverse Bouc–Wen model was connected in series with
the PEA to compensate the hysteresis nonlinearity.
ESO-FOSMC was designed to reduce the influence of
the incomplete compensation, model-plant mismatches
at high-frequency and external disturbances. Moreover,
the bounds of the estimation error for extended state
observer are estimated, and the convergence of the pro-
posed control strategy is proved. The experimental
results showed that PEAs with the proposed controller
has faster response time and smaller tracking error in
tracking a reference signal over a range of frequency,
compared with ESO-SMC. The future work will focus
on an adaptive fractional order SMC which can tune
the controller parameters online.
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